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LISA is a space-bome gravitational wave detector, which is formed by three 
spacecraft orbiting the Sun and forming the vertices of an equilateral triangle with a side 
of 5 million km in length. Inside each spacecraft, shown in Figure 1, an optical bench 
monitors the motion of two separated proof masses, which reflect the laser light from the 
adjacent spacecraft along the edges of the equilateral triangle, and senses the gravitational 
wave signal with unprecedented sensitivity. 

This paper considers the feasibility of a non-invasive compensation scheme for 
precise positioning of a massive extended body in free fall using gravitational forces 
caused by surrounding source masses. A number of control masses (CM) move around 
the proof mass (PM) so that its position can be accurately compensated when exogenous 
disturbances are acting on it, and its sensitivity to gravitational waves remains therefore 
unaffected. Past methods to correct the dynamics of the proof mass have considered 
active electrostatic or capacitive methods, but the possibility of stray capacitances on the 
surfaces of the LISA cubical proof mass have prompted the investigation of other 
alternatives, such as the method presented in this paper. 

New results are obtained in this paper for the linearized dynamics and stability of 
gravitationally interacting bodies. We initially assume that all masses are in free space. 
We can add the spacecraft and orbital base accelerations later. The perturbed 
displacements of the proof mass and one of the control masses are (Figures 2 and 3): 

ro = R, +uo 
r, = R, +u, 

and the equations of motion of the system are: 
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0 moro = gi +IC,, 
mi& = gi +fi 

where no is the perturbation off the geodesic path for mo (caused by forces other than 
gravity, i.e. magnetic forces, electrostatic forces, radiation forces, and others), and fi a 
control force. Assume that initially mo is at the zero point of self gravity (Ro and dio 
constants). After linearizing the gravity field, assuming small deviations from initial 
equilibrium, one obtains: 

gp +piAi ( ui - u0) -3 linearizing , go = +pidii IdiiI 
gi = -pidii (dii I -3 

since dii = diO+ uo-ui, and 

A i = - - -  2 --[dk 3 xdb X l , ]  

(ab)' '' (db)5 

One can observe that the matrix h i  is not positive definite. 
The linearized equations of motion about initial equilibrium of a system of the proof mass 
PM+6 control masses CM yields: 

also not positive definite. Therefore dynamic instability is expected. Also, when 
the point control masses move, the cubical proof mass extended body feels both a 
resultant force and a resultant torque about its center of mass. The center of gravity of the 
proof mass is also separated from the center of mass, on account of the mass distribution 
surrounding it. These details of the mass distribution are very important for this 
application, as the precision at which the proof mass must be controlled is very high. 

Another paper by the author describes the ongoing finite element-based modeling 
effort being carried out at JPL to determine the gravitational forces and moments, and 
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force and moment gradients, acting on the LISA proof mass to within the accuracy 
required for successful operation of the interferometer. 

There are several forms that the controller can take. Define by (ui, vi) the 
displacement and velocity vectors of the control masses (CM), while (uo, vg) are the 
displacement and velocity vectors of the proof mass (PM), and (Ki, Di) are the 
proportional and derivative gain matrices of the control loop. The proof mass is only 
actuated via the gravitational interaction. Therefore, one may have that: 

1) PM is never actuated, only sensed. 
fi=-K* u- -D.v. 2) Feedback force on CMi only: 1 1  1 1  

3) Feedback force on CMi and PM: 
4) Feedback force on PM only: 

5) 

fi=-Ki(ui-UO)-Di (v~-vo) 
fi=-KiUO-DiVO 

Feedback force plus cancellation terms: fi=-KiUi-DiVi+piKi (u~-uo) 

The requirements for PM position control along the non-sensitive axes are: less 
than 100 micron displacements in the sensitive axis, with 100 nanometer precision in 
translation, and less than 5 milliradian adjustments, with 50-nanoradian precision in 
attitude. The basic question is: using a model with point mass CMs and a finite-volume 
cubical PM, how much linear motion of what combinations and numbers of CMs is 
required to produce this kind of control of a PM? In this paper we show that the 
requirements can be met by moving up to 14 control masses (six facing the sides of the 
proof mass cube, and 8 facing the vertices) around the proof mass (Figure 4), so that the 
proof mass can be repositioned with a response time of about 15 hours by using the 
gravitational field of the control masses as the actuation mechanism. A feedback plus 
feed-forward control scheme is used on the CMs, and a parametric analysis is carried out 
to determine the sensitivity of the PM response to CM initial positioning and mass, 
demonstrating effective control of the proof mass within the specified requirements. 

Figure 4 depicts the initial configuration of proof mass (large center cube) and 14 
control masses (6 facing the sides of the proof mass, 8 facing the corners). Figure 5 
shows the displacement (above) and Velocity (below) command profile for the control 
masses. Figure 6 shows the displacement of the proof mass in microns vs. the simulation 
time in hours. The proof mass is initially at zero, with a mass of 1.3 Kg, and the residual 
oscillation is about 90 nm. Figure 7 shows the displacement of the control mass in 
microns vs. the simulation time in hours. The control mass initially at -0.0554m, with a 
mass of 1.3 Kg, and the residual oscillation is about 90 nm. Figure 8 shows the effect of 
control mass size on proof mass stability (vertical axis: displacement of proof mass along 
X in microns; horizontal axis: simulation time in hours; curves shown: red=3 Kg control 
mass, magenta=2 Kg control mass, blue=1.3 Kg control mass). Figure 9 shows the effect 
of control mass distance on proof mass stability (vertical axis: displacement of proof 
mass along X in microns; horizontal axis: simulation time in hours; curves shown: red= 
control mass initially located at 4 cm, blue= control mass initially located at 5.544 cm). 

Further extensions of this work include: 1) modeling all the control masses as 
truly extended bodies, 2) an evaluation of the possible sensing and motion estimation 
possibilities for the proof mass, and 2) optimizing over the number and location of these 



control masses to maximize the sensitivity of the proof mass to their motion. The initial 
results of this paper lay the ground for these further developments. 

Figure 1 .  Picture of LISA spacecraft. 
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Figure 2. Geometric description of point masses interacting gravitationally. 
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Figure 3. Interactions between point masses in perturbed configuration. 
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Figure 4. Initial configuration of proof mass (large center cube) and 14 control masses (6 
facing the sides of the proof mass, 8 facing the comers). 



Figure 5. Displacement (above) and Velocity (below) command profile for control 
masses. 

Figure 6.  Vertical axis: displacement of proof mass in microns, horizontal axis: 
simulation time in hours. Proof mass initially at zero, mass=l.3 Kg. Residual oscillation 

is about 90 nm. 



Figure 7. Vertical axis: displacement of control mass in microns, horizontal axis: 
simulation time in hours. Control mass initially at -0.0554m, mass=l.3 Kg. Residual 

oscillation is about 90 nm. 

Figure 8. Effect of control mass size on proof mass stability (vertical axis: displacement 
of proof mass along X in microns; horizontal axis: simulation time in hours; curves 

shown: red=3 Kg control mass, magenta=2 Kg control mass, blue=l.3 Kg control mass). 
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Figure 9. Effect of control mass distance on proof mass stability (vertical axis: 
displacement of proof mass along X in microns; horizontal axis: simulation time in hours; 

curves shown: red= control mass initially located at 4 cm, blue= control mass initially 
located at 5.544 cm). 




